Quantum unidirectional rotation directly imaged with molecules

نویسندگان

  • Kenta Mizuse
  • Kenta Kitano
  • Hirokazu Hasegawa
  • Yasuhiro Ohshima
چکیده

A gas-phase molecular ensemble coherently excited to have an oriented rotational angular momentum has recently emerged as an appropriate microscopic system to illustrate quantum mechanical behavior directly linked to classical rotational motion, which has a definite direction. To realize an intuitive visualization of such a unidirectional molecular rotation, we report high-resolution direct imaging of direction-controlled rotational wave packets in nitrogen molecules. The rotational direction was regulated by a pair of time-delayed, polarization-skewed laser pulses, introducing the dynamic chirality to the system. The subsequent spatiotemporal propagation was tracked by a newly developed Coulomb explosion imaging setup. From the observed molecular movie, time-dependent detailed nodal structures, instantaneous alignment, angular dispersion, and fractional revivals of the wave packet are fully characterized while the ensemble keeps rotating in one direction. The present approach, providing an accurate view on unidirectional rotation in quantum regime, will guide more sophisticated molecular manipulations by utilizing its capability in capturing highly structured spatiotemporal evolution of molecular wave packets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators

Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...

متن کامل

A quantum-mechanical investigation of functional group effect on 5,5'-disubstituted-1,1'-azobis(tetrazoles)

The present work reports the detailed B3LYP/6-311++G(d,p) study of most stable transand cisconfigurations photoisomerization in the core system of computational photochemistry-the 5,5'-disubstituted-1,1'-azobis (tetrazole) molecules. All computations were carried out in gas phase attemperature 293.15 K and pressure 1 atm. Firstly; the potential energy surface (PES) of the groundstate of the mol...

متن کامل

Kinetic analysis of the rotation rate of light-driven unidirectional molecular motors.

The combination of a photochemical and a thermal equilibrium in overcrowded alkenes, which is the basis for unidirectional rotation of light-driven molecular rotary motors, is analysed in relation to the actual average rotation rates of such structures. Experimental parameters such as temperature, concentration and irradiation intensity could be related directly to the effective rates of rotati...

متن کامل

Light-driven rotary molecular motors without point chirality: a minimal design.

A fundamental requirement for achieving photoinduced unidirectional rotary motion about an olefinic bond in a molecular motor is that the potential energy surface of the excited state is asymmetric with respect to clockwise and counterclockwise rotations. In most available light-driven rotary molecular motors, such asymmetry is guaranteed by the presence of a stereocenter. Here, we present non-...

متن کامل

Unidirectional Rotation in Catenanes

In this work, two different catenane based molecular motors were reviewed. These motor molecules consist of two interlocked rings, one of which has binding sites for the other ring. The smaller ring without the binding sites can rotate over the other macrocycle when the affinities of the binding sites are changed. If the rotation is unidirectional the molecule could in principle perform work. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015